Example of simple statistical treatment of antibiotic inhibition studies.
In this study the antibiotic sensitivity of three species: Bacillus subtilis, Klebsiella pneumoniae and Salmonella enterica were tested for their sensitivity to Cefalexin (30 (g disk) using standard zone of inhibition testing on iso-sensitest agar. Zones of inhibition were measured for multiple independent test (n = 30) for all three species.

	Susceptibility (zone of inhibition in mm)

	B. subtilis
	K. pneumoniae
	S. enterica

	47
	15
	14

	48
	10
	15

	48
	10
	14

	48
	15
	16

	47
	13
	11

	32
	13
	14

	35
	14
	15

	50
	16
	11

	51
	13
	12

	53
	16
	11

	33
	10
	15

	35
	15
	13

	42
	15
	13

	48
	15
	14

	31
	9
	16

	31
	16
	15

	36
	15
	14

	37
	16
	16

	48
	11
	12

	41
	10
	11

	46
	11
	16

	44
	13
	11

	39
	12
	13

	52
	15
	13

	50
	12
	11

	39
	11
	16

	48
	16
	14

	36
	12
	11

	40
	14
	12

	36
	14
	13


	Mean

	42.4
	13.2
	13.4

	Standard deviation

	6.92
	2.20
	1.79
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Fig. 1 Antibiotic susceptibility of B. subtilis, K. pneumoniae and S. enterica to Cefalexin (30 (g) in a standard disc diffusion assay. Error bars represent standard deviation for biological replicates (n = 30).

From the above data you should instantly be able to see that there is a difference between the sensitivity of the Gram-positive B. subtilis and the Gram-negative K. pneumoniae and S. enterica. In fact, looking at the error bars indicates that there is a significant* difference between the three species sensitivity. Please read the paper “Error bars in experimental biology” on BlackBoard. You should make sure that you have a basic grasp of simple statistics. In this case Standard Deviation has been plotted, but it is often more appropriate to plot Confidence Intervals or Standard Error. 
Furthermore, a bar chart is not the best way to present this data – show a range for the data that most samples do not fit into e.g. for B. subtilis the smallest ZoI was 31 mm – cut the bar chart starts at 0 – think of other ways to present this data.
In order to further investigate whether there is a significant difference between the sensitivity of the three species to Cefalexin we can perform an Analysis of Variance (ANOVA). See here for a description of ANOVA and here for some examples and detailed analysis (much of this document is from this site)
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In this example, I will use MINITAB (available software on the campus system) to perform an ANOVA test.

Enter the individual replicate data into Minitab:
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From the Stat menu you can select ANOVA – ONE-WAY UNSTACKED:
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You can then select each species individually (click each species and then click select, when you have al three you can click OK)
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You will see the following screen:
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This gives you the F ratio score (452.23) and the level of significance (<0.000). The F-ratio can be thought of as a measure of how different the means are relative to the variability within each sample. The larger this value, the greater the likelihood that the differences between the means are due to something other than chance alone, namely real effects. You will see that the confidence intervals for K. pneumoniae and S. enterica overlap and are not significantly different (you can test this by comparing just these two species – results in a F value of 0.1 and p=0.75, see below). However, the confidence intervals for B. subtilis do not overlap with the other species and this result is significantly different:
If the difference between the means is due only to chance, that is, there are no real effects, then the expected value of the F-ratio would be one (1.00). This is true because both the numerator and the denominator of the F-ratio are estimates of the same parameter. Seldom will the F-ratio be exactly equal to 1.00, however, because the numerator and the denominator are estimates rather than exact values. Therefore, when there are no effects the F-ratio will sometimes be greater than one, and other times less than one.
In an ANOVA, the F-ratio is the statistic used to test the hypothesis that the effects are real: in other words, that the means are significantly different from one another. Before the details of the hypothesis test may be presented, the sampling distribution of the F-ratio must be discussed.

If the experiment were repeated an infinite number of times, each time computing the F-ratio, and there were no effects, the resulting distribution could be described by the F-distribution. The F-distribution is a theoretical probability distribution characterized by two parameters, df1 and df2, both of which affect the shape of the distribution. Since the F-ratio must always be positive, the F-distribution is non-symmetrical, skewed in the positive direction.

The F-ratio which cuts off various proportions of the distributions may be computed for different values of df1 and df2. These F-ratios are called Fcrit values and may be found by entering the appropriate values for degrees of freedom in an F-distribution program. In our example df1 = 2 and df2 = 87 giving Fcrit values of 3.114 (0.05 level) and 4.89 (0.01 level). See below for a description of these values. Thus, as our F value is 452.23 is much greater than the Fcrit value at 0.01, it indicates that our means are significantly different and thus we can conclude that the difference in sensitivity of B. subtilis is a real effect. 
* In statistical significance testing, the p-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. A closely related concept is the E-value which is the average number of times in multiple testing that one expects to obtain a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. The E-value is the product of the number of tests and the p-value. The lower the p-value, the less likely the result is if the null hypothesis is true, and consequently the more "significant" the result is, in the sense of statistical significance. One often rejects the null hypothesis when the p-value is less than 0.05 or 0.01, corresponding respectively to a 5% or 1% chance of rejecting the null hypothesis when it is true (Type I error). In this example the p value was <0.000 meaning that the result is highly significant. It is common practice to state that a result is significantly different if p =<0.05 and that it is highly significant if p=<0.01. In graphs a single asterisk (*) is used to denote significant difference and a double asterisk (**) is used for highly significant differences.

Thus for our data we could report: The different sensitivity for B. subtilis to Cefalexin compared to K. pneumoniae and S. enterica is highly significant (F = 452, p =<0.01). In order to improve our graph we could add the following:
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Fig. 1 Antibiotic susceptibility of B. subtilis, K. pneumoniae and S. enterica to Cefalexin (30 (g) in a standard disc diffusion assay. Error bars represent standard deviation for biological replicates (n = 30). Significant difference (** F = 452, p=<0.01) between samples was determined by a one-way ANOVA. 

