Gibbs free energy: Difference between revisions

From The School of Biomedical Sciences Wiki
Jump to navigation Jump to search
Created page with "1800s, Josiah Willard Gibbs, (1839-1903) submitted scientific papers which contained mostly observations on systems at equilibrium. To do so Gibbs mathematically combined both en..."
 
No edit summary
Line 1: Line 1:
1800s, Josiah Willard Gibbs, (1839-1903) submitted scientific papers which contained mostly observations on systems at equilibrium. To do so Gibbs mathematically combined both enthalpy and entropy (the measure of energy release and disorder in a system respectively) that also incorporates the second law of thermodynamics:  
1800s, Josiah Willard Gibbs, (1839-1903) submitted scientific papers which mathematically combined both enthalpy and entropy (the measure of energy release and disorder in a system respectively) that also incorporates the second law of thermodynamics:
<blockquote>'''entropy can never decrease, only increase for a reaction to take place.''' </blockquote>
<blockquote>
<u>'''Why doesn't free energy = enthalpy - entropy?'''</u>  
'''Entropy can never decrease, only increase for a reaction to take place.'''
</blockquote>
in order to measure the amount of free enerfy present within any given system.<ref name="Hmolpedia">Sadi, Carnot. (2013). Willard Gibbs. Available: http://www.eoht.info/page/Willard+Gibbs. Last accessed 28th Nov 2013.</ref>
<blockquote</blockquote><u>'''Why doesn't free energy = enthalpy - entropy?'''</u>  


<u>'''Reasoning behind Gibbs equation&nbsp;'''</u><br>The signs for enthalpy and entropy must be opposites to each other, "because one function tends to a maximum and the other tends to a minimum." As a consequence the one equation proposed for&nbsp;this "unknown energy function"&nbsp;could be:  
<u>'''Reasoning behind Gibbs equation&nbsp;'''</u><br>The signs for enthalpy and entropy must be opposites to each other, "because one function tends to a maximum and the other tends to a minimum." As a consequence the one equation proposed for&nbsp;this "unknown energy function"&nbsp;could be:  
<blockquote>'''X= U - S''' (where X = Function, U = Enthalpy, S = Entropy) </blockquote>
<blockquote>'''X= U - S''' (where X = Function, U = Enthalpy, S = Entropy) </blockquote>
Although this must be carried out under standard conditions, so U must be substituted for an H to demonstrate a constant pressure. (of 1atm) In addition to this, the units are wrong in our current equation; as we know, enthalpy is measure in joules ('''J''') of energy, entropy on the other hand is measured in&nbsp;joules per kelvin.&nbsp;('''J K<sup>-1</sup>''') Thus, we must also multiply entropy ('''S''') by temperature in Kelvin. ('''T''') Giving us the following potential equation:  
Although this must be carried out under standard conditions, so U must be substituted for an H to demonstrate a constant pressure. (of 1atm) In addition to this, the units are wrong in our current equation; as we know, enthalpy is measure in joules ('''J''') of energy, entropy on the other hand is measured in&nbsp;joules per kelvin.&nbsp;('''J K<sup>-1</sup>''') Thus, we must also multiply entropy ('''S''') by temperature in Kelvin. ('''T''') Giving us the following equation when delta symbols are incorporate to represent that this function is for free energy changes:  
<blockquote>'''G = H - TS''' (where G = Function, H = Enthalpy, S = Entropy, T = Temperature) </blockquote>
<blockquote>'''dG = dH - dTS''' (where G = Free energy, H = Enthalpy, S = Entropy, T = Temperature, d = Change in associated function)</blockquote>
'''<u>Application</u>'''
 
We can now determine each individual component of this equation, enthalpy change being determined&nbsp;via "calorimetric measurment" to give us our value for '''dH; '''entropy can then be found if '''dG'''&nbsp;and temperature are known, the opposite can be said for determining '''dG'''&nbsp;itself with '''dS '''being our known value instead. For a reaction to be possible, it has been stated that the entropy of the universe is always increased. Consequently for a reaction to take place, '''dG '''must always be negative, with '''dS''' in the the equation for free energy exceeding that of the enthalpy change '''dH'''.

Revision as of 16:44, 28 November 2013

1800s, Josiah Willard Gibbs, (1839-1903) submitted scientific papers which mathematically combined both enthalpy and entropy (the measure of energy release and disorder in a system respectively) that also incorporates the second law of thermodynamics:

Entropy can never decrease, only increase for a reaction to take place.

in order to measure the amount of free enerfy present within any given system.[1]

<blockquoteWhy doesn't free energy = enthalpy - entropy?

Reasoning behind Gibbs equation 
The signs for enthalpy and entropy must be opposites to each other, "because one function tends to a maximum and the other tends to a minimum." As a consequence the one equation proposed for this "unknown energy function" could be:

X= U - S (where X = Function, U = Enthalpy, S = Entropy)

Although this must be carried out under standard conditions, so U must be substituted for an H to demonstrate a constant pressure. (of 1atm) In addition to this, the units are wrong in our current equation; as we know, enthalpy is measure in joules (J) of energy, entropy on the other hand is measured in joules per kelvin. (J K-1) Thus, we must also multiply entropy (S) by temperature in Kelvin. (T) Giving us the following equation when delta symbols are incorporate to represent that this function is for free energy changes:

dG = dH - dTS (where G = Free energy, H = Enthalpy, S = Entropy, T = Temperature, d = Change in associated function)

Application

We can now determine each individual component of this equation, enthalpy change being determined via "calorimetric measurment" to give us our value for dH; entropy can then be found if dG and temperature are known, the opposite can be said for determining dG itself with dS being our known value instead. For a reaction to be possible, it has been stated that the entropy of the universe is always increased. Consequently for a reaction to take place, dG must always be negative, with dS in the the equation for free energy exceeding that of the enthalpy change dH.

  1. Sadi, Carnot. (2013). Willard Gibbs. Available: http://www.eoht.info/page/Willard+Gibbs. Last accessed 28th Nov 2013.