Glutamic acid: Difference between revisions

From The School of Biomedical Sciences Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Glutamic acid (also known as Glutamate) is a negatively charged amino acid with an acidic side chain. It is a vital component in the excitatory pathways of the nervous system in mammals with it's gated ion channels being the most common ion channels found in the brain. Glutamate ion channels found in the hippocampus are responsible for most of the depolarizing currents of Excitatory PostSynaptic Potentials ( EPSPs).  
Glutamic acid (also known as Glutamate) is a negatively charged amino acid with an acidic side chain. It is a vital component in the excitatory pathways of the nervous system in mammals with it's gated ion channels being the most common ion channels found in the brain. Glutamate ion channels found in the hippocampus are responsible for most of the depolarizing currents of Excitatory PostSynaptic Potentials ( EPSPs).
 
 


<br>  
<br>  
Line 9: Line 11:
<br>  
<br>  


<u>'''References &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;'''</u>
<br>
 
[[Category:References]]
 
 
 
 
 
 
 
 


ALBERTS, B. (2008). Molecular biology of the cell. New York [etc.], Garland Science. p691
'''<u>References &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<br></u>'''ALBERTS, B. (2008). Molecular biology of the cell. New York [etc.], Garland Science. p691

Revision as of 13:43, 11 December 2012

Glutamic acid (also known as Glutamate) is a negatively charged amino acid with an acidic side chain. It is a vital component in the excitatory pathways of the nervous system in mammals with it's gated ion channels being the most common ion channels found in the brain. Glutamate ion channels found in the hippocampus are responsible for most of the depolarizing currents of Excitatory PostSynaptic Potentials ( EPSPs).











References                                                                                                                                                                                                                                                                       
ALBERTS, B. (2008). Molecular biology of the cell. New York [etc.], Garland Science. p691