Synaptic plasticity

From The School of Biomedical Sciences Wiki
Revision as of 22:16, 1 December 2018 by 180401176 (talk | contribs) (Corrected grammar and added a hyperlink to neurotransmitter)
Jump to navigation Jump to search

In neuroscience, synaptic plasticity is the ability of a synapse to strengthen or weaken in response to a change in its activity[1]. This can last a few seconds or a life time. Additionally, changes in plasticity of the synapse also results from variations in the number of neurotransmitter recptors located on the synapse.[2] There are several fundamental mechanisms that unite to achieve synaptic plasticity, these are, changes in the amount of neurotransmitters released into synapse and alterations in how effectively cells respond to these neurotransmitters.[3] Synaptic plasticity in excitatory as well as inhibitory synapses has been discovered to be dependent upon upon postsynaptic calcium release.[4] Since memories are hypothesized to be represented by immensely interconnected networks of synapses in the brain, it is therefore thought that synaptic plasticity is associated with learning and memory.

In 1973, Terje Lømo and Tim Bliss described long-term potentation (otherwise known as LTP) in a publication in the Journal of Physiology. Long-term potentiation alters a synapses quality and quantity of transmission and is therefore a type of synpatic plasticity[5].

References

  1. Hughes, John R. (1958). "Post-tetanic Potentiation". Physiological Reviews 38 (1): 91–113. PMID 13505117
  2. Gerrow, Kimberly; Antoine (2010). "Synaptic stability and plasticity in a floating world". Current Opinion in Neurobiology 20 (5): 631–639. doi:10.1016/j.conb.2010.06.010
  3. Gaiarsa, J.L.; Caillard O., and Ben-Ari Y. (2002). "Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance". Trends in Neurosciences 25 (11): 564–570.
  4. Gerrow, Kimberly; Antoine (2010). "Synaptic stability and plasticity in a floating world". Current Opinion in Neurobiology 20 (5): 631–639.
  5. Silverthorn, Dee Unglaub., Johnson, Bruce R., Ober, William C., Garrison, Claire W., Silverthorn, Andrew C.(2009)Human Physiology: An integrated approach, 5th edition, New York: Pearson International. p286