Watson-crick base pairing
DNA consists of two types of bases namely; Purines and Pyrimidines. There are two types of Purines: Adenine and Guanine as well as two types of Pyrimidines: Cytosine and Thymine . In the Watson-Crick DNA base pairing model a Purine always binds with a Pyrimidine, however, each purine binds to one particular type of pyrimidine.
Adenine(A) binds to Thymine(T) whilst, Guanine(G) binds to Cytosine(C); although in RNA Unracil (U) is substituted for Thymine(T). This base pairing is referred to as complementary, hence the base pairs are called complementary base pairs. [1] The base pairs are bound by Hydrogen bonds, although the number of H-bonds differs between base pairs. G-C base pairs are bound by three (3) Hydrogen bonds whilst, A-T base pairs are bound by two (2) Hydrogen bonds as illustrated by Figure 1.1 below.
Importance
Watson-Crick base pairing is of very great importance as it is a deciding factor in DNA Replication.[2] It ensures that pairs form between complementary bases only. The formation of base pairs between two non-complementary bases results in gene mutations which can be detrimental to development of an organism.
References
Cite error:
<ref>
tags exist, but no <references/>
tag was found