Programme Regulations: 2021/22

Programme Titles: Postgraduate Certificate in Power Electronics for Sustainable Electric Propulsion

Code: 3179F

Notes

- (i) These programme regulations should be read in conjunction with the University's Taught Programme Regulations
- (ii) A compulsory module is a module which a student must take.
- (iii) All modules are delivered in Linear mode unless stated otherwise as Block, eLearning or distance learning.

1. Programme Structure

- (a) The programme is available to study in full-time mode.
- (b) The period of study for full-time mode shall be 8 months.
- (c) The Postgraduate Certificate programme comprises modules to a credit value of 60 with the following minimum requirement: minimum of 40 credits at Level 7 and maximum of 20 credits at Level 6.
- (d) Modules will be delivered at Newcastle University (NU) and the University of Nottingham (UNot).
- (e) Candidates on the Postgraduate Certificate shall select a minimum of 30 credits to be selected from Newcastle University and a minimum of 30 credits to be selected from Nottingham University.
- (f) Candidates on the Postgraduate Certificate shall take optional modules to a value of 60 credits. A minimum of one Level 7 and maximum one Level 6 module for each semester is required, as from the following:

Code	Descriptive title	Total Credits	Credits Sem 1	Credits Sem 2	Credits Sem 3	Level	Туре	Offered by
CSC8631	Data Management and Exploratory Data Analysis	10	10			7	Block	NU
EEE8147	Advanced Power Electronics and Applications	20	20			7	Block	NU
EEE8148	Electrical Power and Control Project	20	20			7	Block	NU
EEE8153	Linear Controller Design & State Space with Matlab Applications	20	20			7	Block	NU
EEE8159	Electrical Machines and their applications	20	20			7	Block	NU
MEC8058	Instrumentation and Drive Systems	20	20			7	Block	NU
EXT8023	Advanced AC Drives	20		20		7		UNot
EXT8024	Aerospace Manufacturing	20		20		7		UNot

Last Updated: 11/05/2021 07:53

EXT8025	Introduction to	20	20	7	UNot
	Transport Materials				
EXT8026	Power Systems for	20	20	7	UNot
	Aerospace, Marine				
	and Automotive				
	Applications				
EXT8027	Professional Studies	10	10	6	UNot
	В				
EXT8028	Power Electronics	20	20	7	UNot
	Design Solutions				
	and Project				
	Development				

Selection is based on students need. Other taught activities are available and require the approval of the CDT Director.

2. Assessment methods

Details of the assessment pattern for each module are explained in the module outline.

3. Progression

These modules provide the initial taught training year for the EPSRC Centre for Power Electronics.

Last Updated: 11/05/2021 07:53