Programme Regulations: 2021 - 2022

Programme Title: Degree of Master of Science in Chemistry

Code: 5371F

Notes

- (i) These programme regulations should be read in conjunction with the University's Taught Programme Regulations.
- (ii) All optional modules are offered subject to the constraints of the timetable and to any restrictions on the number of students who may be taught on a particular module. Not all modules may be offered in all years and they are listed subject to availability.
- (iii) A compulsory module is a module which a student must take.
- (iv) All modules are delivered in Linear mode unless stated otherwise as Block, eLearning or distance learning.

Programme Structure

- a) The programme is available for study in full-time mode only.
- (b) The period of study for full-time mode shall be one year starting in September. The 60 credit project will begin once suitable training has been received and appropriate modules completed.
- (c) The programme comprises modules to a credit value of 180.

All candidates shall take the following compulsory modules:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	S1	<i>S2</i>	<i>S3</i>		
CHY8812	Research Skills and	20		20		7	
	Development						
CHY8836	Synthetic Methodology for	20	20			7	
	Drugs						
CHY8840	Recent Advances in Chemistry	20	10	10		7	
	Research						
[‡] CHY8841	Contemporary Inorganic and	20	10	10		7	
	Physical Chemistry						
NES8002	Research Dissertation Project	60		5	55	7	

[‡] Previous BSc graduates of Newcastle University will not take CHY8841, Contemporary Inorganic and Physical Chemistry

- i. Non BSc Chemistry Newcastle University Candidates shall take 20 of optional modules from the following:
- ii. Previous BSc Chemistry graduates of Newcastle University shall take 30 credits from the following:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	<i>S</i> 1	<i>S2</i>	<i>S3</i>		
CHY8423	Chemistry Far From Equilibrium	10	10			7	
CHY8424	Contemporary Catalysis:	10	10			7	
	Principles and Applications						
CHY8425	Exploring d and f block chemistry: applications and structural	10	10			7	
	methods						

CHY8428	Energy and Materials	10	10		7	
CHY8825	Proteins as Drug Targets: structure, function, and molecular modelling	10	10		7	
CHY8834	Selectivity and Stereocontrol in Organic Synthesis	10	10		7	
CHY8835	Further Organic Chemistry	10	10		7	

iii. Candidates shall choose 20 credits from the following:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	S1	<i>S2</i>	<i>S3</i>		
BIO8046	Applied Bioinformatics	10		10		7	Block
SPG8007	Renewable Energy: Technology for circular and hydrogen economies	10		10		7	Block
CEG8642	Environmental Organic Matter	10		10		7	Block

iv. Previous BSc Chemistry graduates of Newcastle University shall take the following compulsory 30 credits:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	<i>S</i> 1	<i>S2</i>	<i>S3</i>		
BIO8046	Applied Bioinformatics	10		10		7	Block
CEG8642	Environmental Organic Matter	10		10		7	Block
SPG8007	Renewable Energy: Hydrogen and Fuel Cell Technology	10		10		7	Block

2. Assessment methods

Details of the assessment pattern for each module are explained in the module outline.