Programme Regulations: Academic Year 2022/2023

Joint Degree Programme between Singapore Institute of Technology (SIT) and Newcastle University (NU) leading to a Bachelor of Engineering with Honours in Chemical Engineering

Programme Code: 1411U

New Students 2021/2022 (AY2021/2022 cohort and onwards)

- 1. The programme consists of 180 credits. One credit at SIT is equivalent to two credits at Newcastle University.
- 2. The programme is taught over nine trimesters.
- 3. On successful completion of the programme students will receive a joint degree award from Newcastle University and Singapore Institute of Technology.
- 4. The joint programme is assessed on an A-F letter grade and associated 5.0 0 grade point scale.
- 5. A D Grade with corresponding grade point of 1.0 is a pass grade.
- 6. Students have a 5-year maximum candidature to complete their programme. Students will have a maximum of one re-sit for examinations/re-submission for continuous assessment and one remodule attempt per module, unless a successful Personal Extenuating Circumstances (PEC) application is made.
- 7. Students should attain at least a 2.0 Cumulative GPA (CGPA) after each trimester to maintain a good academic standing.

After each study trimester and/or consecutive trimester, the joint Board of Examiners will track the academic standing of students with CGPA < 2.0 and issue the students with the following:

- Academic Warning in any study trimester, CGPA < 2.0
- Academic Probation in the next consecutive study trimester, CGPA < 2.0
- Academic Termination in the 3rd consecutive study trimester, CGPA < 2.0
- 8. Students obtaining an F grade or grade point of 0 in any module will be entitled to one resit/resubmission as of right.

If the failed module is a pre-requisite for a higher-level module, the student will not be able to take the higher-level module until the pre-requisite of the previous module has been met.

If the student fails the re-sit, a single re-module attempt will be offered at the next available opportunity.

9. Students obtaining an F grade undertaking a re-sit/re-submission attempt will have their grade point capped at 1.00 for the calculation of the CGPA

10. Students obtaining a D+/D or F grade have the option to undertake a re-module attempt and the grade point will be capped at 2.00 for the calculation of the CGPA.

For students who have a number of D+/D/F grades the Board of Examiners should review their complete profile for the academic year to ensure that the Board has the full information to allow them to make an informed decision on whether or not to allow progression to the next trimester or require the student to pause their studies or retain in a particular year to improve their academic performance. This will also allow the Board to see where students have used up their one single re-sit and one single re-module attempt after which they will be unable to progress in the programme.

Current students who commenced study in 2019/2020 or 2020/2021 (AY2020/2021 cohort and before)

The following regulations apply:

- 1. The programme consists of 180 credits. One credit at SIT is equivalent to two credits at Newcastle University.
- 2. The programme is taught over nine trimesters.
- 3. On successful completion of the programme students will receive a joint degree award from Newcastle University and Singapore Institute of Technology.
- 4. The joint programme is assessed on an A-F letter grade and associated 5.0 0 grade point scale.
- 5. A D Grade with corresponding grade point of 1.0 is a pass grade.
- 6. Students have a 5-year maximum candidature to complete their programme. Students will have a maximum of one re-sit for examinations/re-submission for continuous assessment and one remodule attempt per module, unless a successful Personal Extenuating Circumstances (PEC) application is made.
- 7. Students should attain at least a 2.0 Cumulative GPA (CGPA) after each trimester to maintain a good academic standing.

After each study trimester and/or consecutive trimester, the joint Board of Examiners will track the academic standing of students with CGPA < 2.0 and issue the students with the following:

- Academic Warning in any study trimester, CGPA < 2.0
- Academic Probation in the next consecutive study trimester, CGPA < 2.0
- Academic Termination in the 3rd consecutive study trimester, CGPA < 2.0
- 8. Students obtaining a D+/D/F grade will have a maximum of one re-sit/re-submission and one re-module attempt, unless a successful Personal Extenuating Circumstances (PEC) application has been made.
- 9. Re-sit and re-module attempts will be capped at grade point 2.00 for the calculation of CGPA.
- 10. Students are permitted no more than 10 credits at each level (UK FHEQ 4, 5, 6) at Grade D/grade point 1.5 or Grade E/grade point 1.0 for modules undertaken in 2019-20 and 2020-21.
- 11. The Board of Examiners will consider the complete profile for all students with D/E/F grades from 2019-20 or 2020-21 to ensure that the programme regulations do not materially disadvantage students are applied.

For students who have a number of D+/D/E/F grades the Board of Examiners should review their complete profile for the academic year to ensure that the Board has the full information to allow them to make an informed decision on whether or not to allow progression to the next trimester or require the student to pause their studies or retain in a particular year to improve their academic performance. This will also allow the Board to determine where students have used up their one single re-sit and one single re-module attempt after which they will be unable to progress in the programme.

Candidates will normally undertake the following programme of study:

Module Code	Module Title	Credits	FHEQ Level	Year	Trimester	Module Lead
CHE1011	Engineering Maths 1	5	4	1	1	NU
CHE1012	Statistics	6	4	1	1	SIT
CHE1014	Mass & Energy Balance	6	4	1	1	SIT
CHE1015	Biomolecular Science	6	4	1	1	SIT
CHE1013	Technical Writing & Communication	5	4	1	1	SIT
CHE1021	Engineering Maths 2	6	4	1	2	NU
CHE1022	Organic Chemistry	6	4	1	2	SIT
CHE1023	Organic Chemistry Lab	6	4	1	2	SIT
CHE2025	Career and Professional Dev	5	4	1	2	SIT
CHE2017	Computing and Simulation	6	4	1	2	Joint NU (80%) SIT (20%)

Module Code	Module Title	Credits	FHEQ Level	Year	Trimester	Module Lead
CHE2012	Heat and Mass Transfer	6	5	2	1	NU
CHE2013	Reactor Engineering 1	5	5	2	1	NU
CHE2014	Separation Processes 1	6	5	2	1	NU
CHE2016	Thermodynamics	5	5	2	1	SIT
CHE2015	Engineering Practice	6	5	2	1 and 2	Joint NU (50%) SIT (50%)
CHE2021	Process Measurement, Dynamics and Control	5	5	2	2	SIT
CHE2022	Process Safety	5	5	2	2	NU
CHE2023	Reactor Engineering 2	5	6	2	2	NU
Module Code	Module Title	Credits	FHEQ Level	Year	Trimester	Module Lead

CHE2024	Separation Processes 2	5	6	2	2	SIT
CHE2033	Sustainable Industry, Design & Manufacture	5	6	2	3	NU
CHE2011	Fluid Mechanics	5	5	2	3	NU
CHE2031	Integrated Work Study Programme	10	6	2	3	Joint NU (40%) SIT (60%)

Module Code	Module Title	Credits	FHEQ Level	Year	Trimester	Module Lead
CHE2031	Integrated Work Study Programme	10	6	3	1 and 2	Joint NU (40%) SIT (60%)
CHE3022	Process Design, Economics and Project Management	5	6	3	2	SIT
CHE3023	Solids Handling	5	6	3	2	Joint NU (84%) SIT (16%)
CHE3025	Renewable Energy Tech & Clean Tech Applications	5	6	3	2	NU
CHE2032	Chemical Process Optimisation	5	6	3	2 and 3	NU
CHE3031	Plant Design Project	20	6	3	2 and 3	Joint NU (60%) SIT (40%)
CHE3021	Process Control 2	5	6	3	3	SIT

Suitable qualified candidates may gain entry directly into year 2, in which case they will take the following modules:

Module Code	Module Title	Credits	FHEQ Level	Year	Trimester	Module Lead
CHE1011	Engineering Maths 1	5	4	2	1	NU
CHE2012	Heat and Mass Transfer	6	5	2	1	NU
CHE2013	Reactor Engineering 1	5	5	2	1	NU
CHE2014	Separation Processes 1	6	5	2	1	NU
CHE2016	Thermodynamics	5	4	2	1	SIT
CHE2017	Computing and Simulation	6	4	2	1	Joint NU (80%) SIT (20%)
CHE2015	Engineering Practice	6	5	2	1 and 2	Joint NU (50%) SIT (50%)
CHE1021	Engineering Maths 2	6	4	2	2	NU
CHE2021	Process Measurement, Dynamics and Control	5	5	2	2	SIT
CHE2022	Process Safety	5	5	2	2	NU
CHE2023	Reactor Engineering 2	5	6	2	2	NU
CHE2024	Separation Processes 2	5	6	2	2	SIT
CHE2025	Career and Professional Development	5	4	2	2	SIT
CHE2011	Fluid Mechanics	5	5	2	3	NU
CHE2033	Sustainable Industry, Design & Manufacture	5	6	2	3	NU
CHE2031	Integrated Work Study Programme	10	6	2	3	Joint NU (40%) SIT (60%)

Module Code	Module Title	Credits	FHEQ Level	Year	Trimester	Module Lead
CHE2031	Integrated Work Study Programme	10	6	3	1	Joint NU (40%) SIT (60%)
CHE3022	Process Design, Economics and Project Management	5	6	3	2	SIT
CHE3023	Solids Handling	5	6	3	2	Joint NU (84%) SIT (16%)
CHE3025	Renewable Energy Tech & Clean Tech Applications	5	6	3	2	NU
CHE2032	Chemical Process Optimisation	5	6	3	2 and 3	NU
CHE3031	Plant Design Project	20	6	3	2 and 3	Joint NU (60%) SIT (40%)
CHE3021	Process Control 2	5	6	3	3	SIT

Student will take the Overseas Immersion Programme (OIP) (Non-Credit Bearing) in Year 2, Trimester 3.

1. Assessment methods

Details of the assessment pattern for each module are explained in the module profile.

2. Degree classification

Degree classifications are based upon all 180 ECTS credits and the CGPA attained by students at the end of the programme.

Full details of the classifications and how these are calculated can be found in the NU-SIT Joint Academic Guide.