Programme Regulations: 2022/2023

Programme Title: Degree of Master of Science in Sustainable Chemical Engineering Code: 5031F

Notes:

- (i) These programme regulations should be read in conjunction with the University's Postgraduate (Taught) Progress Regulations and Examination Conventions.
- (ii) A compulsory module is a module which a student is required to study.
- (iii) All modules are delivered in Linear mode unless stated otherwise as Block, eLearning or distance learning.

1. Programme structure

- (a) The programme is available for study in full-time mode.
- (b) The period of study for full-time mode shall be one year starting in September.
- (c) The programme comprises modules to a credit value of 180.
- (d) Optional module choice is dependent on timetabling and subject to Degree Programme Director. Approval. Candidates are required to discuss their optional module selection with the DPD who will advise on specialist module routes for Sustainable Chemical Engineering, Environmental Management or Materials, through the programme.

(e) All candidates shall take the following compulsory modules:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	Sem 1	Sem 2	Sem 3		
CME8019	Energy Management	10	10			7	Block
CME8038	Sustainable Industry	10	10			7	Block
CME8064	Research, Communication and Professional Skills	20		20		7	Block
CME8065	Recycling and LCA for Sustainable Materials	10	10			7	Block
CME8097	Chemical Engineering Dissertation	60			60	7	

(f) Students shall choose a total of 70 credits from the following optional module list:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	Sem 1	Sem 2	Sem 3		
CEG8608	Remediating Contaminated	10		10		7	Block
	Land						
CEG8107	Environmental Engineering	10		10		7	Block
	for Developing Countries						
CEG8112	Air Pollution	10	10			7	Block
CME8107	Process Intensification *	10	10			7	Block
CME8012	Business and Environmental	10	10			7	Block
	Management						
CME8043	Fuel Cells System I	10	10			7	Block

			r	r	1	
CME8044	Electrochemical Energy	10		10	7	Block
	Conversion and Storage					
CME8060	Lifetime Prediction & Design	20		20	7	Block
	for Reliability					
CME8061	Advance Materials for	20		20	7	Block
	Energy Applications					
CME8118	Stability and Sustainability	10	10		7	Block
	of Materials					
CME8129	Modelling Materials and	20	20		7	Block
	Processes	-	_			
SPG8007	Renewable Energy:	10		10	7	Block
	Technology for circular and				-	
	hydrogen economies					
SPG8008	Renewable Energy: Biomass	10		10	7	Block
	and Bioenergy	10				Diook
SPG8009	Renewable Energy: Policy,	10	10		7	Block
51 00005	Politic and Ethics	10	10		,	DIOCK
SPG8013	Environmental Impact	10		10	7	Block
3FG6013	Assessment	10		10	/	DIUCK
CDC 9014		10	10		7	Block
SPG8014	Introduction to Hydro,	10	10		/	BIOCK
	Wind, Wave and Tidal					
	Energy				 	
SPG8017	Introduction to	10	10		7	Block
	Photovoltaics					
SPG8027	Project Management	10		10	7	Block
	Appreciation					

2. Assessment methods

Details of the assessment pattern for each module are explained in the module outline.