Programme Regulations: 2022-2023

Programme Title: Degree of Master of Science in Chemistry

Code: 5371F

Notes

- (i) These programme regulations should be read in conjunction with the University's Taught Programme Regulations.
- (ii) All optional modules are offered subject to the constraints of the timetable and to any restrictions on the number of students who may be taught on a particular module. Not all modules may be offered in all years and they are listed subject to availability.
- (iii) A compulsory module is a module which a student must take.
- (iv) All modules are delivered in Linear mode unless stated otherwise as Block, eLearning or distance learning.

Programme Structure

- (a) The programme is available for study in full-time mode only.
- (b) The period of study for full-time mode shall be one year starting in September. The 60 credit project will begin once suitable training has been received and appropriate modules completed.
- (c) The programme comprises modules to a credit value of 180.
- (d) All candidates shall take the following compulsory modules:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	<i>S</i> 1	<i>S2</i>	<i>S3</i>		
CHY8812	Research Skills and Development	20		20		7	
CHY8836	Synthetic Methodology for Drugs	20	20			7	
CHY8840	Recent Advances in Chemistry	20	10	10		7	Linear in
	Research						Semester 1 and
							block/linear in
							Semester 2
CHY8841 [‡]	Contemporary Inorganic and	20	10	10		7	
	Physical Chemistry						
NES8002	Research Dissertation Project	60		5	55	7	_

[‡] Previous BSc graduates of Newcastle University will not take CHY8841, Contemporary Inorganic and Physical Chemistry

- (e) (i) Non BSc Chemistry Newcastle University Candidates shall take 20 credits of optional modules in Semester 1 from the following list:
 - (ii) Previous BSc Chemistry graduates of Newcastle University shall take 30 credits of optional modules in Semester from the following list:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	<i>S</i> 1	<i>S2</i>	<i>S3</i>		
CHY8423	Chemistry Far From Equilibrium	10	10			7	
CHY8424	Contemporary Catalysis: Principles and Applications	10	10			7	
CHY8425	Exploring d and f block chemistry: applications and structural methods	10	10			7	
CHY8428	Energy and Materials	10	10			7	
CHY8825	Proteins as Drug Targets: structure, function, and molecular modelling	10	10			7	

CHY8834	Selectivity and Stereocontrol in Organic Synthesis	10	10		7	
CHY8835	Pericyclic and radical reactions	10	10		7	

(f) Non BSc Chemistry Newcastle University Candidates shall take 20 credits from the following optional modules in Semester 2:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	S1	<i>S2</i>	<i>S3</i>		
BIO8076	Applied Bioinformatics	20		20		7	Block
CHY8842	Molecular Simulations and Computer-aided Drug Design (CADD	20		20		7	
CHY8828	Bioactive Natural Products	10		10		7	
CHY8838	Biopharmaceuticals and Therapeutics	10		10		7	

(g) Previous BSc Chemistry graduates of Newcastle University shall take 30 credits from the following optional modules in Semester 2:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	S1	<i>S2</i>	<i>S3</i>		
BIO8076	Applied Bioinformatics	20		20		7	Block
CEG8642	Environmental Organic Matter	10		10		7	Block
CHY8842	Molecular Simulations and	20		20		7	
	Computer-aided Drug Design						
	(CADD						
SPG8007	Renewable Energy: Technology	10		10		7	Block
	for circular and hydrogen						
	economies						
CHY8828	Bioactive Natural Products	10		10		7	
CHY8838	Biopharmaceuticals and	10		10		7	
	Therapeutics						

^{*} Please note due to timetable restrictions you may not be able to choose all modules, please discuss with the Degree Programme Director before choosing your modules.

2. Assessment methods

Details of the assessment pattern for each module are explained in the module outline.