PROGRAMME SPECIFICATION

1	Awarding Institution	Newcastle University
2	Teaching Institution	Newcastle University
3	Final Award	M.Eng.
4	Programme Title	Power Engineering (Degree
		Apprenticeship)
5	UCAS/Programme Code	H630
6	Programme Accreditation	To be sought in 2021/22
7	QAA Subject Benchmark(s)	Engineering
8	FHEQ Level	7
9	Last updated	May 2023

10 Programme Aims

- to provide opportunities for students to undertake a broad-based education in electrical and electronic engineering and to acquire appropriate knowledge and understanding, of engineering skills and key skills,
- to produce graduates who will be equipped to enter employment in industry, the professions or public service,
- to give extended experience of group activities,
- to give experience of working in an industrial environment in accord with the university's policy and procedures for the assurance of the quality and standards of placement learning,
- to produce graduates who will meet the accreditation requirements of the Institution of Engineering and Technology.
- to provide a qualification which meets the designated learning outcomes at level 7 of the National Qualifications Framework and meets the requirements of the National Subject Benchmarks in Engineering.
- Provide, in the later stages, specialisation in an area of engineering to enhance their professional capability in the field of Power Engineering, as demonstrated by a coherent group of specialist taught modules and a major individual project primarily meeting the requirements of the electrical power generation, transmission and distribution industry.

As this programme is for Apprentices, who are in employment, there will be considerable periods of time in the workplace, which will:

- Facilitate independent self-management and proactive interaction in a non-university setting.
- Provide practical work experience that will benefit current academic study and longer term career progression.
- Enable students to ethically apply their knowledge and skills in the work place, reflect upon their development and effectively evidence and articulate their learning in relevant future settings.

11 Learning Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas. The programme outcomes (US, EA, D, P, S prefixes) have references to the UK-SPEC learning outcomes which are referenced in the QAA benchmark statements for Engineering.

US1 Knowledge and understanding of scientific principles and methodology necessary to underpit heir education in their engineering discipline, to enable appreciation of its scientific and engineering context, and to support their understanding of historical, current, and future developments and technologies US1 A comprehensive understanding of the scientific principles of own specialisation and related disciplines; US2 Knowledge and understanding of mathematical principles necessary to underpin their education in their engineering discipline and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. US2m An awareness of developing technologies related to own specialisation us3 Ability to apply and integrate knowledge and understanding of other engineering discipline to support study of their own engineering discipline US3m A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods The primary means of impatring knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check	Underning Science And Methematics		
necessary to underpin their education in their engineering discipline, to enable appreciation of its scientific and engineering context, and to support their understanding of historical, current, and future developments and technologies US1m	Underpinning Science And Mathematics US1 Knowledge and understanding of scientific principles and methodology		
enable appreciation of its scientific and engineering context, and to support their understanding of historical, current, and future developments and technologies A comprehensive understanding of the scientific principles of own specialisation and related disciplines; Knowledge and understanding of mathematical principles necessary to underpin their education in their engineering discipline and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. US2m An awareness of developing technologies related to own specialisation Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline US3m A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by inde	031		
Support their understanding of historical, current, and future developments and technologies A comprehensive understanding of the scientific principles of own specialisation and related disciplines; US2 Knowledge and understanding of mathematical principles necessary to underpin their education in their engineering discipline and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. US2m An awareness of developing technologies related to own specialisation and provided and understanding of other engineering disciplines to support study of their own engineering disciplines to support study of their own engineering discipline and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A poply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use			
developments and technologies A comprehensive understanding of the scientific principles of own specialisation and related disciplines; Knowledge and understanding of mathematical principles necessary to underpin their education in their engineering discipline and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. An awareness of developing technologies related to own specialisation US3 Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline US3m A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of ne			
US2 Knowledge and understanding of the scientific principles of own specialisation and related disciplines; Knowledge and understanding of mathematical principles necessary to underpin their education in their engineering discipline and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. US2m An awareness of developing technologies related to own specialisation US3 Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline US3m A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is ac			
Specialisation and related disciplines; Knowledge and understanding of mathematical principles necessary to underpin their education in their engineering discipline and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. US2m An awareness of developing technologies related to own specialisation Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline discipline and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of impatring knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is a	IIS1m	Δ comprehensive understanding of the scientific principles of own	
Knowledge and understanding of mathematical principles necessary to underpin their education in their engineering discipline and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. An awareness of developing technologies related to own specialisation	031111		
underpin their education in their engineering discipline and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. US2m An awareness of developing technologies related to own specialisation Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through lengineering material and computer modelling	1182		
them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems. An awareness of developing technologies related to own specialisation Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline uson computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through lectures and project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testin	032		
the analysis and solution of engineering problems. An awareness of developing technologies related to own specialisation An awareness of developing technologies related to own specialisation Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement aught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through lectures and practical programming exercises in Matlab and C and through conductor and computer modelling skills (US3m)			
US2m An awareness of developing technologies related to own specialisation US3 Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline US3m A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer mod			
Ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of their own engineering discipline. A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises	IIS2m		
US3m A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testin			
US3m A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in a	033		
A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations. US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accoun			
computer models relevant to the engineering discipline, and an appreciation of their limitations. An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Engineering Analysis EA1 Un	I IS3m		
US4m An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursewo	000111		
An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (U			
outside engineering, and the ability to apply them effectively in engineering projects Knowledge and Understanding Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, course work reports, p	IIS/Im		
A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis	034111		
Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. A2 Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis			
A1 Apply personal and professional development strategies to prioritise, plan, and manage their own skills development and learning. Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis			
plan, and manage their own skills development and learning. Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. Demonstrate an understanding of a work environment, how it functions and their contribution to it. Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis	Δ1		
Research, select and apply relevant knowledge aimed at enhancing their own skills and effectiveness in specific duties at their placement. Demonstrate an understanding of a work environment, how it functions and their contribution to it. Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis	731		
Own skills and effectiveness in specific duties at their placement. A3 Demonstrate an understanding of a work environment, how it functions and their contribution to it. A4 Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to	Δ2		
Demonstrate an understanding of a work environment, how it functions and their contribution to it. Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. **Assessment Strategy** Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. **Engineering Analysis**	712		
and their contribution to it. Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to	Δ3		
Relate their work based learning to other areas of personal development, including academic performance. Teaching and Learning Methods The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis	7.0		
Including academic performance. Teaching and Learning Methods US The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to	A4		
Teaching and Learning Methods The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. **Assessment Strategy** Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. **Engineering Analysis**			
The primary means of imparting knowledge and understanding of fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
fundamental mathematics, science and engineering principles (US1-US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. **Assessment Strategy** Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. **Engineering Analysis**	US		
US4m) is lectures. These are supplemented by example classes and (in stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to		fundamental mathematics, science and engineering principles (US1-	
stage 1) by small group tutorials which enable students to check their learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. **Assessment Strategy** Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. **Engineering Analysis**			
learning. Practical lab work reinforces learning (US1, US2). Throughout the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
the course students are encouraged to supplement taught material by independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
independent reading, for which they are given extensive support and guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
guidance on reading materials and how to use them. Awareness of new developments (US2m) is acquired through examples in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
in lectures and project work in the latter stages. Knowledge of other engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to		Awareness of new developments (US2m) is acquired through examples	
engineering disciplines (US3) is acquired through Engineering Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
Mathematics which includes examples from a range of disciplines and through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
through mechanical engineering and physics concepts covered in topics such as electrical machines and semiconductor devices. Mathematical and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
and computer modelling skills (US3m) are acquired through lectures and practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
practical programming exercises in Matlab and C and through CAD tools in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to		and computer modelling skills (US3m) are acquired through lectures and	
in project work. Concepts in areas outside engineering (US4m) are learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
learned through lectures in accountancy and law and through project work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
Work. Assessment Strategy Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
Testing the knowledge base is through a combination of unseen written examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to		work.	
examinations and assessed coursework (US1-US4m) in the form of laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
laboratory reports, coursework reports, project reports and presentations. Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
Engineering Analysis EA1 Understanding of engineering principles and the ability to apply them to			
EA1 Understanding of engineering principles and the ability to apply them to			
ן anaiyse кеу engineering processes.	EA1		
		analyse key engineering processes.	

EA1m	An ability to use fundamental knowledge to investigate new and	
	emerging technologies.	
EA2	Ability to identify, classify and describe the performance of systems and	
	components through the use of analytical methods and modelling	
EA2m	techniques.	
EA2M	Ability to apply mathematical and computer-based models for solving problems in engineering, and the ability to assess the limitations of	
	particular cases.	
EA3	Ability to apply quantitative methods and computer software relevant to	
	their engineering discipline, in order to solve engineering problems.	
EA3m	Ability to extract data pertinent to an unfamiliar problem, and apply in its	
EA4	solution using computer based engineering tools when appropriate.	
EA4	Understanding of and ability to apply a systems approach to engineering problems.	
	Teaching and Learning Methods	
EA	Analytical skills (EA1, EA3) are developed through worked examples in	
	lectures and small group teaching (at stage 1), and solving tutorial	
	problems. Mathematical and computer modelling (EA3, EA2, EA2m,	
	EA3m) is used in project work to solve engineering problems. Student	
	are encouraged to learn a systems approach (EA4) by applying principles	
	taught in lectures to their project work. Knowledge of emerging technologies is imparted through lectures and students carry out	
	investigations into aspects of these during literature studies and project	
	work.	
	Assessment Strategy	
	Analysis and problem solving skills (EA1-EA4) are assessed through	
	written examinations and coursework and through project work, which	
	appears throughout the course.	
D1	Design Investigate and define a problem and identify constraints including	
2.	environmental and sustainability limitations, health and safety and risk	
	assessment issues;	
D1m	Wide knowledge and comprehensive understanding of design processes	
	and methodologies and the ability to apply and adapt them in unfamiliar	
D2	situations Understand customer and user needs and the importance of	
DZ	considerations such as aesthetics;	
D2m	Ability to generate an innovative design for products, systems,	
	components or processes to fulfil new needs	
D3	Identify and manage cost drivers	
D4	Use creativity to establish innovative solution;	
D5	Ensure fitness for purpose for all aspects of the problem including	
D6	production, operation, maintenance and disposal;	
טט	Manage the design process and evaluate outcomes. Teaching and Learning Methods	
D	Design skills (D1, D2, D3, D5, D6, D1m) are learned from lectures and	
•	practised in project work and paper design exercises. Students are	
	supported in developing creativity (D4, D2m) during project work.	
	Assessment Strategy	
	Design skills (D1, D2, D3, D5, D6, D1m) are assessed through laboratory	
	project reports, assignments and dissertations, presentations and written examinations.	
	Creative skills (D4, D2m) are mainly assessed through coursework and	
•	project work reports and presentations	
Economic, Social, And Environmental Context		
S1	Knowledge and understanding of commercial and economic context of	

S1m	Extensive knowledge and understanding of management and business
	practices, and their limitations, and how these may be applied
	appropriately
S2	Knowledge of management techniques, which may be used to achieve
	engineering objectives within that context;
S2m	The ability to make general evaluations of commercial risks through
	some understanding of the basis of such risks
S3	Understanding of the requirement for engineering activities to promote
	sustainable development;
S4	Awareness of the framework of relevant legal requirements governing
	engineering activities, including personnel, health, safety, and risk
	(including environmental risk) issues;
S5	Understanding of the need for a high level of professional and ethical
	conduct in engineering.
	Teaching and Learning Methods
S	Knowledge of management techniques and practices (S2,S1m,S2m) is
	imparted through lectures and practised through business exercises and
	project work. An understanding of ethical issues (S5) is imparted by
	lectures and developed through group discussions. Knowledge of social,
	legal, environmental and economic implications of engineering activities
	(S1,S3,S4) is imparted through lectures on engineering topics and on
	accountancy, finance and law and business management. Students are
	encouraged to develop further awareness in project work, particularly
	through project work undertaken with their employer.
	Assessment Strategy
	Knowledge of management techniques and practices (S2,S1m,S2m) is
	assessed by written examinations, group project reports and business
	exercise reports. Understanding of ethical issues (S5) is not assessed
	directly. Knowledge of social, legal, environmental and economic
	implications of engineering activities (S1,S3,S4) is assessed by
	examinations, project reports and business exercise reports.
	Engineering Practice
P1	Knowledge of characteristics of particular materials, equipment,
	processes, or products.
P1m	A thorough understanding of current practice and its limitations, and
	some appreciation of likely new developments;
P2	Workshop and laboratory skills.
P2m	Extensive knowledge and understanding of a wide range of engineering
	materials and components.
P3	Understanding of contexts in which engineering knowledge can be
	applied (e.g. operations and management, technology development,
	etc.).
P3m	Ability to apply engineering techniques taking account of a range of
	commercial and industrial constraints.
P4	Understanding use of technical literature and other information sources.
P5	Awareness of nature of intellectual property and contractual issues.
P6	Understanding of appropriate codes of practice and industry standards
P7	Awareness of quality issues.
P8	Ability to work with technical uncertainty.
	Teaching and Learning Methods
Р	Experimental skills (P2) are developed by carrying out laboratory
	experiments and constructing practical projects. Knowledge of materials,
	products and processes (P1,P2m) is imparted through lectures and
	through open-ended project work. Students are encouraged to 'learn by
	doing'. An understanding of the industrial and commercial application of
	engineering practice and some practical limitations (P1m,
	P3,P3m,P5,P6,P7,P8) is achieved through open-ended project work
	including an industrial project. Students also learn how to use information
	sources such as technical literature (P4) during these projects. An
	3001069 30011 as teorifical literature (1 4) dufing these projects. All

	awareness of intellectual property and contractual issues is also imparted
	through lectures in business management, accountancy and law.
	Assessment Strategy
	Assessment of practical skills (P1, P2, P2m) is through observed
	laboratory work, laboratory and project report writing and assessed
	presentations and demonstrations. Skill P4 is assessed directly by
	literature study report and by integration into project and laboratory
	reports. Understanding of industrial and commercial practice (P1m,
	P3,P3m,P5,P6,P7,P8) is assessed through industrial project presentation
	and report and through extended coursework. General Transferable Skills
T1	Plan, conduct and report a programme of investigative work.
T1m	Develop, monitor and update a plan or programme of work, to reflect a
1 1111	changing operating environment;
T2	Communicate effectively in writing, verbally and diagrammatically.
T3	Give oral presentations using a variety of visual aids.
T4	Apply mathematical skills.
T5	Work as a member of a team.
T5m	Understand different roles within a team, and be able to exercise
	leadership;
T6	Use information and communications technology.
T7	Learn independently in familiar and unfamiliar situations with open-
	mindedness and in the spirit of critical enquiry.
T7m	Learn new theories, concepts, methods etc. in unfamiliar situations.
T8	Reflect on and manage own learning and development within the
TO	workplace.
Т9	Use existing and new knowledge to enhance personal performance in a
	workplace environment, evaluate the impact and communicate this process.
T10	Use graduate skills in a professional manner in a workplace environment,
110	evaluate the impact and communicate the personal development that has
	taken place.
	Teaching and Learning Methods
Т	Project planning skills (T1,T1m) are developed through business
	exercises and practical project work. Knowledge of Communication and
	presentation skills (T2,T3) is imparted through communications skills
	lectures and practised through report writing, and giving oral
	presentations. Mathematical skills (T4) are developed throughout the
	course in lectures, problem solving exercises and analysis of practical
	experimental work.
	Team working skills (T5, T5m) are developed through group project work. IT and communication technology skills (T6) are developed through the
	use of computer aided design and office software tools to produce
	coursework submissions.
	Throughout the course the learner is encouraged to undertake
	independent reading both to supplement and consolidate what is being
	taught / learnt and to broaden their individual knowledge and
	understanding of the subject (T7, T7m).
	Reflective learning and the use of this to enhance personal performance
	(T8, T9) are introduced in the Stage 1 Special Study Unit (SSU). This is
	built on in subsequent years, up to and including the End Point
	Assessment.
	Work based learning in SSUs at each stage are designed to encourage
	professionalism in the workplace while carrying out graduate level
	activities (T10)
	Assessment Strategy Skills T1, T6 and T1m are assessed through coursework, laboratory and
	project reports.
	project reports.

Skill T3 is assessed through presentations.
Skills T2 and T4 are assessed by examinations and coursework
throughout the course.
Skill T5 and T5m are assessed by group project coursework in Stages 2 and 4
Skill T7, T7m is assessed as part of specialist modules and through integration in other activities.
T6 is assessed.
T8 and T9 is assessed through mentoring by the apprentice's employer
T10 is assessed in the outcomes from activity in the SSUs

12 Programme Curriculum, Structure and Features

Basic structure of the programme

Stages 1 and 2 are broadly-based and all modules are compulsory.

Stage 1 aims to provide all students with a firm foundation on which to build their future studies. A substantial mathematical base is provided and is enhanced by mathematical techniques and practice introduced in other modules. Knowledge and understanding of fundamental engineering principles is provided through the technical modules, which also serve to broaden and enhance intellectual abilities. Practical work in the laboratory emphasises a project based approach and develops a range of practical and transferable skills. A Special Study Unit (SSU) develops the ability to undertake reflective learning and use an ePortfolio to record this. The reflective learning element of this module will also be the start of preparation for the End Point Assessment in Stage 4.

Stage 2 is delivered across two years which allows students to spend time with their employer. These two years build on the work of Stage 1, continuing the development of an understanding of mathematical methods at the point of application. Knowledge and understanding is increased through all modules. Project work again forms a major part of the practical work of the stage. In Stage 2 apprentices undertake SSUs with their employers which develop 2D/3D drawing knowledge and provide an understanding of the requirements of the management of engineering programmes. The SSUs also provide ample opportunity for students to practice their research and report writing which provides a good grounding for skills which will be most heavily utilised by the End Point Assessment in Stage 4. This work is practised and assessed as part of the SSUs.

Stage 3 continues to enhance and expand the student's knowledge, understanding and intellectual abilities. However, it is distinct from Stages 1 and 2, where almost all modules cover general electrical and electronic engineering topics, as the apprentice will now largely specialise in power engineering. This covers power systems operation, machines and drives, renewable energy and control systems.

All students take a module covering commercial and legal aspects of engineering to further their understanding of commercial engineering practice. A major part of Stage 3 is the project, which is a significant part of the training of a professional engineer and essential preparation for the EPA in Stage 4. This project enables the development of intellectual ability and practical and transferable skills as well as providing a mechanism for their assessment.

Stage 4 provides further technical modules and the End Point Assessment of the Apprenticeship.

Key features of the programme

The normal Undergraduate year is arranged in three terms and is divided into two Semesters. Semester 1 is twelve weeks, preceded by an induction week and followed by a period of examination for those topics completed in Semester 1. Semester 2 is also twelve weeks long and is followed by a second examination period

The course normally lasts five years, with Stage 2 split across Years 2 and 3 which also includes a significant period of time working with their employer.

Every Honours student studies 120 credits in each Stage, resulting in completion of 480 credits by the end of their course. Candidates must successfully complete all parts of a stage before progressing to the next. Courses are pursued through full-time study, although it is noted that some of that study time is spent with the Employer in Special Study Units.

Programme regulations (link to on-line version)

-RH630

13 Support for Student Learning

Generic information regarding University provision is available at the following link. Generic Information

Methods for evaluating and improving the quality and standards of teaching and learning

Generic information regarding University provision is available at the following link. Generic Information

Accreditation reports

These programmes will be submitted to the Institution of Engineering and Technology for accreditation in 2021/22.

Additional mechanisms

15 Regulation of assessment

Generic information regarding University provision is available at the following link. Generic Information

In addition, information relating to the programme is provided in:

The University Prospectus: http://www.ncl.ac.uk/undergraduate/degrees/#subject
Degree Programme and University Regulations: http://www.ncl.ac.uk/regulations/docs/

Please note. This specification provides a concise summary of the main features of the programme and of the learning outcomes that a typical student might reasonably be expected to achieve if she/he takes full advantage of the learning opportunities provided.