Programme Regulations: 2024/25

Programme Title: Degree of Master of Science in Sustainable Chemical Engineering

Code: 5031F

Notes:

- (i) These programme regulations should be read in conjunction with the University's Postgraduate (Taught) Progress Regulations and Examination Conventions.
- (ii) A compulsory module is a module which a student is required to study.
- (iii) All modules are delivered in Linear mode unless stated otherwise as Block, eLearning or distance learning.

1. Programme structure

- (a) The programme is available for study in full-time mode.
- (b) The period of study for full-time mode shall be one year starting in September.
- (c) The programme comprises modules to a credit value of 180.
- (d) Optional module choice is dependent on timetabling and subject to Degree Programme Director. Approval. Candidates are required to discuss their optional module selection with the DPD who will advise on specialist module routes for Sustainable Chemical Engineering, Environmental Management or Materials, through the programme.

(e) All candidates shall take the following compulsory modules:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	Sem 1	Sem 2	Sem 3		
CME8019	Energy Management	10	10			7	Block
CME8064	Research, Communication and Professional Skills	20		20		7	Block
CME8065	Recycling and Life Cycle Assessment for Sustainable Materials	10	10			7	Block
CME8097	Chemical Engineering Dissertation	60	5	5	50	7	
CME8132	Sustainable Industry	20	20			7	Block

(f) Students shall choose a total of 60 credits from the following optional module list:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	Sem 1	Sem 2	Sem 3		
CEG8107	Environmental	10		10		7	Block
	Engineering in Low and						
	Middle Income Countries						
CEG8112	Air Pollution	10	10			7	Block
CME8012	Business and	10	10			7	Block
	Environmental						
	Management						
CME8060	Lifetime Prediction &	20		20		7	Block
	Design for Reliability						
CME8061	Advance Materials for	20		20		7	Block
	Energy Applications						
CME8107	Process Intensification *	10	10			7	Block

CME8129	Modelling Materials and	20	20		7	Block
	Processes					
CME8131	Electrochemical Energy	20		20	7	Block
	Conversion and Storage					
SPG8007	Renewable Energy:	10		10	7	Block
	Technology for circular					
	and hydrogen economies					
SPG8008	Renewable Energy:	10		10	7	Block
	Biomass and Bioenergy					
SPG8013	Environmental Impact	10		10	7	Block
	Assessment					
SPG8027	Project Management	10		10	7	Block
	Appreciation					
SPG8032	Renewable Electricity	20	20		7	Block
	Generation Systems					

^{*} only students with a Reactor Engineering background should take this module and approval must be sought from the Degree Programme Director

2. Assessment methods

Details of the assessment pattern for each module are explained in the module outline.