Programme Regulations: 2024/25

Programme Title: Degree of Master of Science in Chemistry

Code: 5371F

Notes

- (i) These programme regulations should be read in conjunction with the University's Taught Programme Regulations.
- (ii) All optional modules are offered subject to the constraints of the timetable and to any restrictions on the number of students who may be taught on a particular module. Not all modules may be offered in all years and they are listed subject to availability.
- (iii) A compulsory module is a module which a student must take.
- (iv) All modules are delivered in Linear mode unless stated otherwise as Block, eLearning or distance learning.
- (v) Please discuss with the Degree Programme Director before choosing your optional modules.

1. Programme Structure

- (a) The programme is available for study in full-time mode only.
- (b) The period of study for full-time mode shall be one year starting in September. The 80 credit project will begin once suitable training has been received and appropriate modules completed.
- (c) The programme comprises modules to a credit value of 180.
- (d) All candidates shall take the following compulsory modules:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	<i>S</i> 1	<i>S2</i>	<i>S3</i>		
NES8800	Research Skills and Development	20	10	10		7	
NES8808	Synthetic Methodology for Drugs	20	20			7	
NES8809	Biopharmaceuticals as therapeutics	10		10			
NES8810	Recent Advances in Chemistry	20	10	10		7	Linear in
	Research						Semester 1 and
							block/linear in
							Semester 2
NES8811 [‡]	Contemporary Inorganic and	20	10	10		7	
	Physical Chemistry						
NES8012	Research Dissertation Project	80		25	55	7	

[‡] Previous BSc graduates of Newcastle University will not take NES8811 Contemporary Inorganic and Physical Chemistry.

(e) Semester 1 optional modules

- (i) Non BSc Chemistry Newcastle University Candidates shall take 10 credits of optional modules in Semester 1 from the following list:
- (ii) Previous BSc Chemistry graduates of Newcastle University shall take 30 credits of optional modules in Semester 1 from the following list for a total of 70 credits in S1 and 55 credits in S2:

Code	Descriptive title	Total	Credits	Credits	Credits	Level	Mode
		Credits	<i>S</i> 1	<i>S2</i>	<i>S3</i>		
NES8405	Chemistry Far From Equilibrium	10	10			7	
NES8406	Contemporary Catalysis: Principles and Applications	10	10			7	
NES8407	Exploring d and f block chemistry: applications and structural methods	10	10			7	

NES8408	Energy and Materials	10	10		7	
NES8804	Proteins as Drug Targets: structure,	10	10		7	
	function, and molecular modelling					
NES8806	Selectivity and Stereocontrol in	10	10		7	
	Organic Synthesis					
NES8807	Pericyclic and radical reactions	10	10		7	

^{*} Please discuss with the Degree Programme Director before choosing your modules.

2. Assessment methods

Details of the assessment pattern for each module are explained in the module outline forms.