

Programme Regulations: 2025/26

Programme Title: Degree of Master of Engineering with Honours in Chemical Engineering (Industry) – UCAS Code: H815

Notes

- (i) *These programme regulations should be read in conjunction with the University's Taught Programme Regulations.*
- (ii) *All optional modules are offered subject to the constraints of the timetable and to any restrictions on the number of students who may be taught on a particular module. Not all modules may be offered in all years and they are listed subject to availability.*
- (iii) *Unless otherwise stated under 'Type', modules are not core.*
- (iv) *A compulsory module is a module which a student is required to study.*
- (v) *A core module is a module which a student must pass, and in which a fail mark may neither be carried nor compensated; such modules are designated by the board of studies as essential for progression to a further stage of the programme or for study in a further module.*
- (vi) *All modules are delivered in Linear mode unless stated otherwise as Block, eLearning or distance learning.*
- (vii) *If a candidate meets the requirements for a three-year Bachelor of Engineering degree Chemical Engineering they may transfer to that programme at any time before the start of Stage 3.*
- (viii) *Programme transfers for Student Visa students may be restricted. Please refer to the Visa Team for advice.*

1. Stage 1

All candidates shall take the following compulsory modules:

Code	Descriptive title	Total Credits	Credits Sem 1	Credits Sem 2	Level
CME1021	Thermodynamics	10	10		4
CME1023	Transfer Processes	25		25	4
CME1026	Computing and Numerical Methods	10	5	5	4
CME1027	Data Analysis in Process Industries	5		5	4
CME1028	Chemical Engineering Laboratory	10	5	5	4
CME1029	Chemistry for Chemical Engineers	20	20		4
CME1030	Principles of Chemical Engineering	20	10	10	4
ENG1001	Engineering Mathematics I	20	10	10	4

3. Stage 2

- (a) All candidates shall take the following compulsory modules:

Code	Descriptive title	Total Credits	Credits Sem 1	Credits Sem 2	Level
CME2022	Separation Processes 1	20		20	5
CME2023	Transfer Processes 2	20	20		5
CME2024	Reactor Engineering	10	10		5
CME2027	Introduction to Bioprocessing and Chemical Process Development	10	10		5
CME2028	Thermodynamics 2	10	10		5
CME2029	Process Measurement, Dynamics and Control	10		10	5
CME2030	Chemical Engineering Laboratory II	10		10	5
CME2031	Safety, Risk and Engineering Practice	20		20	5

ENG2011	Engineering Mathematics II	10	10		5
---------	----------------------------	----	----	--	---

(b) In order to progress to Stage 3 of H815, candidates must achieve an overall Stage 2 average of 65% and pass all modules at the first attempt.

In addition, to progress to Stage 3, candidates must secure a placement that supports the Engineering Design requirements of the CME3042 module and obtain approval from the Degree Programme Director before the next academic year begins. If a candidate does not secure an approved placement, they will be required to transfer to Stage 3 of the equivalent programme (H810 or H813).

4. Stage 3

(a) All candidates shall take the following compulsory modules:

Code	Descriptive title	Total Credits	Credits Sem 1	Credits Sem 2	Level
CME3042	Industrial Design Project	60	25	35	6
CME3043	Process Control (Industry)	10	10	0	6
CME8110	Chemical Engineering Knowledge (Industry)	50	25	25	7

(b) In order to progress to Stage 4 of H815, candidates must achieve an overall Stage 3 average of 55% and pass all modules. If a candidate fails the assessment of the placement year, the candidate will be required to transfer to Stage 3 of an equivalent programme (H810 or H813) on return, subject to progression rules of the respective programmes.

5. Stage 4

(a) All candidates shall take the following compulsory modules:

Code	Descriptive title	Total Credits	Credits Sem 1	Credits Sem 2	Level	Type	Mode
CME3033	Separation Processes 2	15	15		6		
CME3035	Reactor Systems Engineering	15	15		6		
CME8120	Advanced Design Project	20	20		7	Core	Block
CME8128	MEng Research Project	60		60	7		

(b) Students can choose 10 credits of optional modules from the following:

Code	Descriptive title	Total Credits	Credits Sem 1	Credits Sem 2	Level	Type	Mode
CME8107	Process Intensification	10	10		7		Block
CME8124	Big Data Analytics in the Process Industry	10	10		7		Block
CME8127	Bioprocess Engineering	10	10		7		Block
CME8130	Formulated Products	10	10		7		Block

(c) Depending upon the nature of the experience gained in placement in Stage 3, some of the compulsory modules listed above may be inappropriate. In this case, replacement modules may be selected with the approval of the Degree Programme Director.

6. Compensation and Condonement

For students entering the programme in 2021/22 onwards, the Engineering Council's policy on compensation and condonement will apply to marks awarded for modules at all stages, to satisfy accreditation requirements. To be awarded an accredited honours degree, only a maximum of 30 credits can be compensated over the duration of the degree programme, where the final mark is up to 5 percentage points below the pass mark. Core modules cannot be compensated. Individual projects and group projects worth more than 20 credits cannot be compensated.

There is no condonement of modules delivering Accreditation of Higher Education Programmes (AHEP) learning outcomes.

Any student not satisfying the accreditation requirements, but satisfying the University's Degree and Assessment regulations, will have the opportunity to be awarded a non-accredited honours degree with its classification based on the overall final stage averages beyond stage one.

7. Assessment methods

Details of the assessment pattern for each module are explained in the module outline.

8. Degree classification

The degree classification will be determined on the basis of all the modules taken at Stages 2, 3 and 4 with the weighting of the stages being 1:2:2 for Stage 2, Stage 3 and Stage 4 respectively.