RNA world: Difference between revisions
No edit summary |
No edit summary |
||
Line 27: | Line 27: | ||
=== References: === | === References: === | ||
Alberts et al (2007). Molecular Biology of the Cell (Vol. 5th Ed). Garland Science.<br> | Alberts et al (2007). Molecular Biology of the Cell (Vol. 5th Ed). Garland Science.<references /><br> | ||
Ribosomes. (2014, November 05). Retrieved from British Society for Cell Biology: http://bscb.org/learning-resources/softcell-e-learning/ribosome/ | Ribosomes. (2014, November 05). Retrieved from British Society for Cell Biology: http://bscb.org/learning-resources/softcell-e-learning/ribosome/<references /><br> | ||
TERC. (2014, November 11). Retrieved from Genetics Home Referencing: [http://ghr.nlm.nih.gov/gene/TERC http://ghr.nlm.nih.gov/gene/TERC]<references /><br> | |||
Cooper. (2000). The Cell: A Molecular Approach (Vol. 2nd Ed). Sinauer Associates Inc<references /> | |||
White. (1976). Coenzymes as fossils of an earlier metabolic state. Journal of Molecular Evolution, 7(2), 101-104.<references /> | |||
Revision as of 16:37, 24 November 2014
All modern organisms have DNA as a store of genetic information, RNA as a message and proteins as their major cellular catalyst. This shows that the organism from which all cellular life began had these properties, which is called 'LUCA', meaning Last Universal Common Ancestor. This is a very complicated model and there are many questions surrounding the origin of life, for example, how did it all start? Where did DNA come from, as proteins are involved in its replication? DNA codes for proteins, so how can proteins have been produced first, as they are believed to have been? What came first - polynucleotides or polypeptides?
The RNA world is the currently accepted hypothesis which answers these questions. This is based around the idea that RNA, as a message, led to proteins (this stage can be referred to as the RNP world), which became catalysts. This led to DNA, the store of genetic information. However the exact specificity of how this came about is still unclear. One concept is that life came from meteorites from outer space, as they have been observed to carry water, organic carbon and biomolecules including amino acids. A similar concept is that life originates from deep sea vents, due to high hydrogen sulphide and mineral levels. One of the most popular concepts is that the early atmosphere composing of water, methane, ammonia and hydrogen went on to produce the core biomolecules. This was demonstrated by Stanley Miller, who formulated an experiment mimicking the conditions of the early atmosphere discovered that after only a week 10-15% of the carbon was found to be part of organic compounds, 2% of that being amino acids.
Evidence supporting the RNA world
The main evidence supporting this hypothesis is the discovery that RNA can act as both a store of genetic information and as a cellular catalyst. The hypothesis is also supported by the fact that RNA can self replicate without the aid of DNA or enzymes.
Both polypeptides and polynucleotides have the ability to store information by means of their amino acid sequences and their nucleotide sequences respectively but only polynucleotides have the ability to replicate. This is due to the fact that one polynucleotide strand can act as a template for another, by the complimentary base pairing of free nucleotides.[1] For this self-replication to be fast, efficient and not prone to errors, a catalyst is required. This catalyst is the RNA molecule itself.
In 1982 both Sidney Altman and Thomas Cech proved that RNA has the ability to act as a catalyst.[2] RNA with catalytic activity is known as a ribozyme. One example of such a ribozyme is known as 'Tetrahymena RNA'. It was found that this RNA molecule could self-splice itself out of a gene without the use of any other enzymes. This was the first demonstartion of catalyis by an RNA molecule. Despite the fact there are only a small number of ribozymes in modern day cells, many have been created in the lab, which can carry out a variety of different functions, including a ribozyme which can self-replicate.
Another major piece of evidence for the RNA hypothesis is the role of RNA in many important chemical processes in the body. DNA replication relies heavily on RNA as a primer for DNA polymerase and also to produce telomeres which prevent telomere shortening. RNA has also been found the catalyst in peptide bond formation therefore suggesting that it came before DNA and proteins.[3][2] It is also more likely that a single molecule was capable of replicating itself, rather than two different molecules being synthesised by random chemical reactions in the same place, at the same time and then coming together in a symbiotic relationship to create one system.
Evidence from modern day life which supports the RNA World hypothesis can be seen by the presence of nucleotides in many important co-factors such as coenzymes A and B12, ATP, NAD and FAD. The nucleotides which reside within these molecules are thought to be remnants of ancestral ribozymes which have been integrated into life as we know it. [4]
Finally The RNA world could easily have evolved into our current day central dogma of biology. with DNA taking over as the main genetic store due to its increased stability and proteins becoming the favoured catalyst due to their larger array of functions leaving RNA as an intermediate molecule between the two systems.
References:
Alberts et al (2007). Molecular Biology of the Cell (Vol. 5th Ed). Garland Science.
Ribosomes. (2014, November 05). Retrieved from British Society for Cell Biology: http://bscb.org/learning-resources/softcell-e-learning/ribosome/
TERC. (2014, November 11). Retrieved from Genetics Home Referencing: http://ghr.nlm.nih.gov/gene/TERC
Cooper. (2000). The Cell: A Molecular Approach (Vol. 2nd Ed). Sinauer Associates Inc
White. (1976). Coenzymes as fossils of an earlier metabolic state. Journal of Molecular Evolution, 7(2), 101-104.