AMPA receptor: Difference between revisions
Created page with "AMPA receptors are Ligand gated ion channels .The ligand (signalling molecule) they are complementary to a Glutamate which is the main ..." |
No edit summary |
||
Line 1: | Line 1: | ||
AMPA receptors are [[Ligand- | <xmlns:texthelpns rwthpgen="1">AMPA receptors are </xmlns:texthelpns>[[Ligand-gated ion channel|Ligand gated ion channels]]<xmlns:texthelpns rwthpgen="1">.The ligand (signalling molecule) they are complementary to is a </xmlns:texthelpns>[[Glutamate|Glutamate]]<xmlns:texthelpns rwthpgen="1">which is the main excitatory </xmlns:texthelpns>[[Neurotransmitter|neurotransmitter]]<xmlns:texthelpns rwthpgen="1">in the </xmlns:texthelpns>[[Central nervous system|CNS]]<xmlns:texthelpns rwthpgen="1">, this means there is a high proportion of these AMPA receptors on postsynaptic neurons in the brain.</xmlns:texthelpns><br><xmlns:texthelpns rwthpgen="1">When Glutamate binds to AMPA receptors it causes a conformational change and the ion channel opens allowing Na+ ions to flood into the postsynaptic cell.</xmlns:texthelpns><xmlns:texthelpns rwthpgen="1">The increase in Na+ concentration causes depolarisation of the postsynaptic membrane generating an</xmlns:texthelpns>[[EPSP|EPSP]]<xmlns:texthelpns rwthpgen="1">( which if strong enough can go on to initiate an </xmlns:texthelpns>[[Action potential|action potential]]<xmlns:texthelpns rwthpgen="1">at the axon hillock).</xmlns:texthelpns><xmlns:texthelpns rwthpgen="1">Repetitive stimulation of these synapses in the brain can cause LTP (</xmlns:texthelpns>[[Long term potentiation|Long-term potentiation]]<xmlns:texthelpns rwthpgen="1">) , due to more Glutamate being released across the synaptic cleft binding to more AMPA receptors which leads to a higher influx of Na+ ions into the cell generating a stronger EPSP.</xmlns:texthelpns><xmlns:texthelpns rwthpgen="1">This strong depolarisation of the post-synaptic member aids to the activation of </xmlns:texthelpns>[[NMDA receptor|NMDA receptors]]<xmlns:texthelpns rwthpgen="1">( along with glutamate binding) which allow Ca2+ ions to enter the post synaptic cell.</xmlns:texthelpns><xmlns:texthelpns rwthpgen="1">This increase in Ca 2+ concentration can cause new AMPA receptors to be inserted in to the post-synaptic membrane increasing the sensitivity of the post-synaptic cell to Glutamate.</xmlns:texthelpns> <ref>Bruce Alberts, e. a., 2008. Molecular Biology of the cell. 5th ed (pg 690). New York: Garland Science.</ref><br> | ||
<u>'''References'''</u> | <u>'''References'''</u> | ||
<u</ | <xmlns:texthelpns rwthpgen="1"><u</u></xmlns:texthelpns><references /> |
Revision as of 14:50, 9 November 2013
<xmlns:texthelpns rwthpgen="1">AMPA receptors are </xmlns:texthelpns>Ligand gated ion channels<xmlns:texthelpns rwthpgen="1">.The ligand (signalling molecule) they are complementary to is a </xmlns:texthelpns>Glutamate<xmlns:texthelpns rwthpgen="1">which is the main excitatory </xmlns:texthelpns>neurotransmitter<xmlns:texthelpns rwthpgen="1">in the </xmlns:texthelpns>CNS<xmlns:texthelpns rwthpgen="1">, this means there is a high proportion of these AMPA receptors on postsynaptic neurons in the brain.</xmlns:texthelpns>
<xmlns:texthelpns rwthpgen="1">When Glutamate binds to AMPA receptors it causes a conformational change and the ion channel opens allowing Na+ ions to flood into the postsynaptic cell.</xmlns:texthelpns><xmlns:texthelpns rwthpgen="1">The increase in Na+ concentration causes depolarisation of the postsynaptic membrane generating an</xmlns:texthelpns>EPSP<xmlns:texthelpns rwthpgen="1">( which if strong enough can go on to initiate an </xmlns:texthelpns>action potential<xmlns:texthelpns rwthpgen="1">at the axon hillock).</xmlns:texthelpns><xmlns:texthelpns rwthpgen="1">Repetitive stimulation of these synapses in the brain can cause LTP (</xmlns:texthelpns>Long-term potentiation<xmlns:texthelpns rwthpgen="1">) , due to more Glutamate being released across the synaptic cleft binding to more AMPA receptors which leads to a higher influx of Na+ ions into the cell generating a stronger EPSP.</xmlns:texthelpns><xmlns:texthelpns rwthpgen="1">This strong depolarisation of the post-synaptic member aids to the activation of </xmlns:texthelpns>NMDA receptors<xmlns:texthelpns rwthpgen="1">( along with glutamate binding) which allow Ca2+ ions to enter the post synaptic cell.</xmlns:texthelpns><xmlns:texthelpns rwthpgen="1">This increase in Ca 2+ concentration can cause new AMPA receptors to be inserted in to the post-synaptic membrane increasing the sensitivity of the post-synaptic cell to Glutamate.</xmlns:texthelpns> [1]
References
<xmlns:texthelpns rwthpgen="1"><u</u></xmlns:texthelpns>
- ↑ Bruce Alberts, e. a., 2008. Molecular Biology of the cell. 5th ed (pg 690). New York: Garland Science.