Supercoiled: Difference between revisions

From The School of Biomedical Sciences Wiki
Jump to navigation Jump to search
No edit summary
Nnjm2 (talk | contribs)
No edit summary
Line 1: Line 1:
Localised unwinding of a circular DNA molecule, which occurs during DNA replication, induces torsional stress into the remaining portion of the molecule because the ends of the strands are not free to rotate. As a result, the DNA molecule twists back on itself, like a twisted rubber band, forming supercoils.[1]
Localised unwinding of a circular [[DNA|DNA]] molecule, which occurs during DNA replication, induces torsional stress into the remaining portion of the molecule because the ends of the strands are not free to rotate. As a result, the DNA molecule twists back on itself, like a twisted rubber band, forming supercoils&nbsp;<ref>Lodish,H.,Berk,A.,Kaiser,C.A.,Krieger,M.,Bretscher,A.,Ploegh,H., and Amon,A. (2013) Molecular Cell Biology,7th Edition, International Edition.</ref><br>


<br>
=== References  ===


References
<references /><br>
 
1. ^ Lodish,H.,Berk,A.,Kaiser,C.A.,Krieger,M.,Bretscher,A.,Ploegh,H., and Amon,A. (2013) ''Molecular Cell Biology,''7th Edition, International Edition''.''

Revision as of 02:02, 25 October 2013

Localised unwinding of a circular DNA molecule, which occurs during DNA replication, induces torsional stress into the remaining portion of the molecule because the ends of the strands are not free to rotate. As a result, the DNA molecule twists back on itself, like a twisted rubber band, forming supercoils [1]

References

  1. Lodish,H.,Berk,A.,Kaiser,C.A.,Krieger,M.,Bretscher,A.,Ploegh,H., and Amon,A. (2013) Molecular Cell Biology,7th Edition, International Edition.